13 research outputs found

    Different radiolabelling methods alter the pharmacokinetic and biodistribution properties of Plasminogen Activator Inhibitor Type 2 (PAI-2) forms

    Get PDF
    Introduction: Tumour-associated urokinase plasminogen activator (uPA) is a critical marker of invasion and metastasis, and it is recognised as having strong prognostic relevance as well as being a therapeutic target. The specific uPA inhibitor plasminogen activator inhibitor type-2 (PAI-2, SerpinB2) specifically targets cell bound uPA and is internalised. Furthermore, preclinical studies have established the “proof-of-principle” of uPA-targeting by PAI-2-cytotoxin conjugates in human carcinoma models. However, these studies also suggest that PAI-2 is rapidly cleared via the renal system with low total dose reaching the tumour. In this study, a comparative single photon emission computed tomography (SPECT) and biodistribution (BD) analysis of different forms of PAI-2 labelled with the radioisotopes iodine-123 (123I) and technetium-99m (99mTc) was undertaken. Methods: The pharmacokinetic (PK) properties and BD of wild-type, ΔCD-loop and PEGylated ΔCD-loop PAI-2 labelled with the commonly used diagnostic SPECT radioisotopes 99mTc or 123I were compared in mouse models of human prostate carcinoma. Whole body SPECT imaging was also performed. Results: Both wild-type or the shorter but active ΔCD-loop form of PAI-2 123I-labelled indirectly via conjugation to free amine groups (termed 123I-Bn-PAI-2) exhibited low tumour uptake, rapid excretion and similar PK profiles. Preliminary studies with a short branched-chain PEGylated 123I-Bn-PAI-2 ΔCD-loop indicated an increase in blood retention time and tumour uptake. All 123I-Bn-labelled radiotracers were largely excreted through the kidneys. By comparison, both wild-type 123I-PAI-2 (labelled directly via tyrosine residues) and 99mTc-PAI-2 displayed different PK/BD patterns compared to 123IBn- PAI-2, suggesting greater liver based catabolism and thus slower elimination. SPECT imaging mimicked the BD results of all radiotracers. Conclusion: The different labelling methods gave distinct PAI-2 BD and tumour uptake profiles, with radioiodination resulting in the best non-tumour organ clearance profiles. Preliminary analyses with short branched-chain PEGylated 123I-Bn-PAI-2 ΔCD-loop suggest that further investigations with other PEGylation reagents are required to optimise this approach for tumour imaging. These findings impact on the use of PAI-2 for drug delivery and/or diagnostic development

    A non-rigid registration method for mouse whole body skeleton registration

    Get PDF
    Micro-CT/PET imaging scanner provides a powerful tool to study tumor in small rodents in response to therapy. Accurate image registration is a necessary step to quantify the characteristics of images acquired in longitudinal studies. Small animal registration is challenging because of the very deformable body of the animal often resulting in different postures despite physical restraints. In this paper, we propose a non-rigid registration approach for the automatic registration of mouse whole body skeletons, which is based on our improved 3D shape context non-rigid registration method. The whole body skeleton registration approach has been tested on 21 pairs of mouse CT images with variations of individuals and time-instances. The experimental results demonstrated the stability and accuracy of the proposed method for automatic mouse whole body skeleton registration

    An improved 3D shape context registration method for non-rigid surface registration

    Get PDF
    3D shape context is a method to define matching points between similar shapes as a pre-processing step to non-rigid registration. The main limitation of the approach is point mismatching, which includes long geodesic distance mismatch and neighbors crossing mismatch. In this paper, we propose a topological structure verification method to correct the long geodesic distance mismatch and a correspondence field smoothing method to correct the neighbors crossing mismatch. A robust 3D shape context model is proposed and further combined with thin-plate spline model for non-rigid surface registration. The method was tested on phantoms and rat hind limb skeletons from micro CT images. The results from experiments on mouse hind limb skeletons indicate that the approach is robust

    Clusterin facilitates in vivo clearance of extracellular misfolded proteins

    Get PDF
    The extracellular deposition of misfolded proteins is a characteristic of many debilitating age-related disorders. However, little is known about the specific mechanisms that act to suppress this process in vivo. Clusterin (CLU) is an extracellular chaperone that forms stable and soluble complexes with misfolded client proteins. Here we explore the fate of complexes formed between CLU and misfolded proteins both in vitro and in a living organism. We show that proteins injected into rats are cleared more rapidly from circulation when complexed with CLU as a result of their more efficient localisation to the liver and that this clearance is delayed by pre-injection with the scavenger receptor inhibitor fucoidan. The CLU-client complexes were found to bind preferentially, in a fucoidan-inhibitable manner, to human peripheral blood monocytes and isolated rat hepatocytes and in the latter cell type were internalized and targeted to lysosomes for degradation. The data suggest, therefore, that CLU plays a key role in an extracellular proteostasis system that recognises, keeps soluble, and then rapidly mediates the disposal of misfolded proteins

    An accurate 3D shape context based non-rigid registration method for mouse whole-body skeleton registration

    No full text
    Small animal image registration is challenging because of its joint structure, and posture and position difference in each acquisition without a standard scan protocol. In this paper, we face the issue of mouse whole-body skeleton registration from CT images. A novel method is developed for analyzing mouse hind-limb and fore-limb postures based on geodesic path descriptor and then registering the major skeletons and fore limb skeletons initially by thin-plate spline (TPS) transform based on the obtained geodesic paths and their enhanced correspondence fields. A target landmark correction method is proposed for improving the registration accuracy of the improved 3D shape context non-rigid registration method we previously proposed. A novel non-rigid registration framework, combining the skeleton posture analysis, geodesic path based initial alignment and 3D shape context model, is proposed for mouse whole-body skeleton registration. The performance of the proposed methods and framework was tested on 12 pairs of mouse whole-body skeletons. The experimental results demonstrated the flexibility, stability and accuracy of the proposed framework for automatic mouse whole body skeleton registration

    Central nervous system expression and PET imaging of the translocator protein in relapsing-remitting experimental autoimmune encephalomyelitis

    No full text
    Glial neuroinflammation is associated with the development and progression of multiple sclerosis. PET imaging offers a unique opportunity to evaluate neuroinflammatory processes longitudinally in a noninvasive and clinically translational manner. 18FPBR111 is a newly developed PET radiopharmaceutical with high affinity and selectivity for the translocator protein (TSPO), expressed on activated glia. This study aimed to investigate neuroinflammation at different phases of relapsing-remitting (RR) experimental autoimmune encephalomyelitis (EAE) in the brains of SJL/J mice by postmortem histologic analysis and in vivo by PET imaging with 18F-PBR111. Methods: RR EAE was induced by immunization with PLP139-151 peptide in complete Freund's adjuvant. Naive female SJL/Jmice and mice immunized with saline-complete Freund's adjuvant were used as controls. The biodistribution of 18F-PBR111 was measured in 13 areas of the central nervous system and compared with PET imaging results during different phases of RR EAE. The extents of TSPO expression and glial activation were assessed with immunohistochemistry, immunofluorescence, and a real-time polymerase chain reaction. Results: There was significant TSPO expression in all of the central nervous system areas studied at the peak of the first clinical episode and, importantly, at the preclinical stage. In contrast, only a few TSPO-positive cells were observed at the second episode. At the third episode, there was again an increase in TSPO expression. TSPO expression was associated with microglial cells or macrophages without obvious astrocyte labeling. The dynamics of 18F-PBR111 uptake in the brain, as measured by in vivo PET imaging and biodistribution, followed the pattern of TSPO expression during RR EAE. Conclusion: PET imaging with the TSPO ligand 18F-PBR111 clearly reflected the dynamics of microglial activation in the SJL/J mouse model of RR EAE. The results are the first to highlight the discrepancy between the clinical symptoms of EAE and TSPO expression in the brain, as measured by PET imaging at the peaks of various EAE episodes. The results suggest a significant role for PET imaging investigations of neuroinflammation in multiple sclerosis and allow for in vivo follow-up of antiinflammatory treatment strategies

    Discovery of [18F]N-(2-(diethylamino)ethyl)-6- fluoronicotinamide : a melanoma positron emission tomography imaging radiotracer with high tumor to body contrast ratio and rapid renal clearance

    Full text link
    The high melanoma uptake and rapid body clearance displayed by our series of [123I]iodonicotinamides prompted the development of [18F]N-(2-(diethylamino)ethyl)-6-fluoronicotinamide ([18F]2), a novel radiotracer for PET melanoma imaging. Significantly, unlike fluorobenzoates, [18F]fluorine incorporation on the nicotinamide ring is one step, facile, and high yielding. [18F]2 displayed high tumor uptake, rapid body clearance via predominantly renal excretion, and is currently being evaluated in preclinical studies for progression into clinical trials to assess the responsiveness of therapeutic agents. © 2009, American Chemical Societ
    corecore